Stability relations of siderite (FeCO_s) in the system Fe-C-O 41

Christ, 1965; Holland, 1959, 1965; Mel'nik, 1964; Yui, 1966). The stability field of siderite is considered to be bounded by six possible reactions (table 1, eqs 3-8).

Reactions (7) and (8) can be stable only at f_{O_2} values below that of the graphite buffer; they lie entirely within the condensed region and do not involve CO_2 or CO (French and Eugster, 1965). Calculated stability fields of siderite, bounded by reactions (3), (4), and (6), have been presented by Garrels (1960) for 298°K and by Holland (1959) for 300° to 600°K. Neither author considered possible reactions involving siderite and graphite.

In the present study, $\Delta G^{\circ}_{f,T}$ data for siderite were calculated from thermodynamic data (Kelley and Anderson, 1935). Values of ΔG°_{T} for each reaction were calculated using values for the oxides tabulated by Coughlin (1954). The calculated values of ΔG°_{T} are essentially linear functions of T from 298° to 1200°K (table 1). Uncertainties in the values were calculated from the stated uncertainties of Coughlin (1954) for the oxide data, and a 1 percent uncertainty was assumed for the siderite data; the total uncertainty in ΔG°_{T} is thus only a minimum value. Data on the other physical properties of the phases involved are summarized elsewhere (Eugster and Wones, 1962; French, ms, 1970).

Values of ΔS° and ΔH° for each reaction (table 1) were calculated from the free energy data, using the relations:

$$\left(\frac{\partial\Delta G^{\circ}}{\partial T}\right)_{\rm p} = -\Delta S^{\circ} \tag{9}$$

$$\begin{pmatrix} \partial & \underline{\Delta G^{\circ}} \\ \hline & T \\ \hline \partial & \underline{-1} \\ \hline & T \end{pmatrix}_{\mathbf{p}} = \Delta \mathbf{H}^{\circ}$$
(10)

(Lewis and others, 1961, p. 165). ΔS° and ΔH° for all reactions are virtually independent of T over the temperature range 298° to 1200°K.

The equilibrium constants K(T) for each reaction were calculated from the relation:

$$\Delta G^{\circ}_{T} = -2.303 \text{ RT } \log \text{ K(T)}$$
$$\log \text{ K(T)} = \frac{-\Delta G^{\circ}}{2.303 \text{ RT}}$$
(11)

and are given in table 1.

Ť.

Values of equilibrium f_{O_2} as a function of T can then be calculated from the equilibrium constant for any specified total pressure. In those reactions in which CO_2 also participates, it is reasonable to assume that $P_{\rm F} = P_{CO_2}$ for temperatures below 600°C and f_{O_2} values above those of the graphite buffer (French and Eugster, 1965). Values of f_{CO_2} were cal-

	TABLE 1		
Calculated thermodynamic	data for siderite d	lecomposition reactions	
action	$\Delta G^{\circ}{}_{_{208}}$ (cal)	ΔG°_{T} (cal)	1

Reaction	ΔG°_{208} (cal)	ΔG°_{T} (cal)	$\log K_i(T)$
3. Siderite + O_2 = hematite + CO_2 2 FeCO ₃ + $\frac{1}{2}O_2$ = Fe ₂ O ₃ + 2 CO ₂ log K ₃ (T) = 2 log f _{CO₂} - $\frac{1}{2}$ log f _{O₂}	- 43,850 ± 4,500	- 26,500 - 54.29 T	+ 6012/T + 11.87
4. Siderite + O_2 = magnetite + O_2 $3 \operatorname{FeCO}_3 + \frac{1}{2} O_2 = \operatorname{Fe}_3 O_4 + 3 \operatorname{CO}_2$ $\log K_4(T) = 3 \log f_{CO_2} - \frac{1}{2} \log f_{O_2}$	$-42,870\pm6,200$	— 13,900 — 96.44 T	+ 3039/T+21.08
5. Siderite $+ O_2 = $ wüstite $+ CO_2$ 0.947 FeCO ₃ $+ 0.026 O_2 = $ Fe _{0.047} O $+ 0.947 CO_2$ log K ₅ (T) $= 0.947 \log f_{CO_2} - 0.026 \log f_{O_2}$	+ 4,490 ± 1,800	+ 16,300 - 39.6 T	- 3564/T + 8.66
6. Siderite = iron + CO ₂ + O ₂ FeCO ₃ = Fe + CO ₂ + $\frac{1}{2}$ O ₂ log K ₆ (T) = log f _{CO2} + $\frac{1}{2}$ log f _{O2}	$+ 66,780 \pm 1,700$	+ 84,600 − 59.65 T	-18,495/T+13.04
7. Siderite = magnetite + graphite + O_2 $3 \operatorname{FeCO}_3 = \operatorname{Fe}_3O_4 + 3 \operatorname{C} + 5/2 O_2$ $\log K_7(T) = 5/2 \log f_{O_2}$	$+239,910\pm6,100$	+ 268,300 - 91.69 T	-58,656/T + 20.05
8. Siderite = iron + graphite + O_2 FeCO ₃ = Fe + C + 3/2 O_2 log K ₈ (T) = 3/2 log f ₀₂	$+161,040 \pm 1,600$	+ 178,700 - 58.97 T	- 39,068/T + 12.89

Bevan M. French